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Abstract
We define the excited K-quantum nonlinear coherent state and prove that
it is indeed a K-quantum nonlinear coherent state characterized by another
nonlinear function whose general expression is found in an explicit form.
We also demonstrate that antibunching is more prominent in the excited
K-quantum nonlinear coherent state than in the corresponding K-quantum
nonlinear coherent state.

PACS numbers: 42.50.Dv, 02.20.−a, 03.65.−w

A large number of nonclassical states (see, e.g., [1–5]) have been recognized so far. They
are, however, not all independent. For example, the so-called photon-added coherent state [6,7]
has recently been shown [8] to belong to the nonlinear coherent state (NCS) [9, 10] and the
excited NCS has been proved [11] to remain a NCS. The q-deformed oscillator [12, 13] was
known just as a particular case of the more general f oscillator [10, 14] whose eigenstate
is nothing other than the NCS. The NCS also embraces the negative binomial state [11, 15],
etc. Re-classification of nonclassical states proves of great interest in understanding and
distinguishing the physics underlying such states.

Recently the K-quantum nonlinear coherent state (KNCS) has been introduced, whose
generation schemes as well as various nonclassical properties such as multi-peaked number
distribution, self-splitting, antibunching and squeezing, have been studied in detail in [16–19].
The KNCS, |ξ, K, j, f 〉, is defined as the right eigenstate of the non-Hermitian operator
aKf (n̂):

aKf (n̂)|ξ, K, j, f 〉 = ξK |ξ, K, j, f 〉, (1)

with a the boson annihilation operator, f a nonlinear operator-valued function of n̂ = a+a,
ξ the complex eigenvalue, K a positive integer and j = 0, 1, . . . , K − 1. This kind of state
includes the Peremolov K-photon coherent state [20, 21].
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In this brief paper we shall present a rigorous proof that the excited KNCS, i.e. the state
generated by the excitations on a KNCS, is also a KNCS. That is, exciting a KNCS does not
transform it to another class of state. This is in contrast to the situation of excitations on a
coherent state.

In terms of the KNCS characterized by the function f (n̂) we define the excited KNCS by
acting by (a+)M on it. The state is thus

(a+)M |ξ, K, j, f 〉 (2)

with M a positive integer. We shall prove that such an excited KNCS also belongs to the
family of the KNCS. That is, it is another KNCS which is characterized by the same K but
with some other nonlinear function fK,M different from f and dependent on both K and M .
To determine the fK,M we distinguish between two situations M � K and M � K .

For M � K we can write M = K + m with m = M − K � 0. Acting with (a+)M on
both sides of (1) gives

(a+)MaKf (n̂)|ξ, K, j, f 〉 = (a+)MξK |ξ, K, j, f 〉. (3)

The RHS of (3) is just the excited KNCS (2) multiplied by ξK :

RHS = ξK(a+)M |ξ, K, j, f 〉. (4)

On the LHS of (3) we represent (a+)M as (a+)m(a+)K and use the identity [22]

(a+)KaK =
K−1∏
l=0

(n̂ − l) (5)

to cast it into

LHS = (a+)m
K−1∏
l=0

(n̂ − l)f (n̂)|ξ, K, j, f 〉. (6)

Because of the identity

(a+)mg(n̂) = g(n̂ − m)(a+)m ∀g(n̂), m (7)

the expression (6) becomes

LHS =
K−1∏
l=0

(n̂ − m − l)f (n̂ − m)(a+)m|ξ, K, j, f 〉. (8)

To proceed further we note the identity [22]

aK(a+)K =
K∏

k=1

(n̂ + k) (9)

which allows us to write the unity operator 1̂ in the form

1̂ = 1∏K
k=1(n̂ + k)

aK(a+)K. (10)

Inserting this operator 1̂ in between f (n̂ − m) and (a+)m in (8), upon use of

g(n̂)aK = aKg(n̂ − K) ∀g(n̂), K, (11)

then becomes

LHS = aKf (n̂ − M)

∏K−1
l=0 (n̂ − M − l)∏K
k=1(n̂ − K + k)

(a+)M |ξ, K, j, f 〉. (12)
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From (4) and (12) we see by virtue of (1) that the excited KNCS (2) is in fact a KNCS:

(a+)M |ξ, K, j, f 〉 = |ξ, K, j, f >
K,M〉 (13)

with the new K- and M-dependent nonlinear function f >
K,M given by

f >
K,M(n̂) = f (n̂ − M)

∏K−1
l=0 (n̂ − M − l)∏K
k=1(n̂ − K + k)

. (14)

For M � K we write K = M + m with m = K − M � 0. Acting with (a+)M on both
sides of (1) we have the same RHS as in (4) but the LHS in this case is

LHS = (a+)MaKf (n̂)|ξ, K, j, f 〉 = (a+)MaMamf (n̂)|ξ, K, j, f 〉. (15)

Using again the identities (5) and (11) yields

LHS =
M−1∏
l=0

(n̂ − l)amf (n̂)|ξ, K, j, f 〉 = amf (n̂)

M−1∏
l=0

(n̂ − m − l)|ξ, K, j, f 〉. (16)

Inserting in between am and f (n̂) the unity operator 1̂, which is constructed this time as

1̂ = 1∏M
k=1(n̂ + k)

aM(a+)M, (17)

we get (16) in the form

LHS = am 1∏M
k=1(n̂ + k)

aM(a+)Mf (n̂)

M−1∏
l=0

(n̂ − m − l)|ξ, K, j, f 〉. (18)

Applying the identities (11) and (7) to (18) casts it into

LHS = aKf (n̂ − M)

∏M−1
l=0 (n̂ − K − l)∏M
k=1(n̂ − M + k)

(a+)M |ξ, K, j, f 〉. (19)

From (4) and (19) we see by virtue of (1) that also in this situation the excited KNCS (2) is a
KNCS:

(a+)M |ξ, K, j, f 〉 = |ξ, K, j, f <
K,M〉 (20)

with another K- and M-dependent nonlinear function f <
K,M given by

f <
K,M(n̂) = f (n̂ − M)

∏M−1
l=0 (n̂ − K − l)∏M
k=1(n̂ − M + k)

. (21)

Combining the two expressions (14) and (21) derived separately in the two situations
mentioned above leads us to the joined result valid for arbitrary positive integers M and K:
the excited KNCS, (a+)M |ξ, K, j, f 〉, is nothing other than a KNCS |ξ, K, j, fK,M〉 with the
same K but with the nonlinear function fK,M , other than f , which depends on both K and M

as

fK,M(n̂) = f (n̂ − M)

∏Lmin−1
l=0 (n̂ − Lmax − l)∏Lmin

k=1 (n̂ − Lmin + k)
(22)

where Lmax = max(M, K) and Lmin = min(M, K). It seems at first glance from (22) that
different formulae apply to different situations (M � K or M � K). However, we find out
that a beautiful expression can be obtained if we notice that

Lmin−1∏
l=0

(n̂ − Lmax − l) = (n̂ − Lmax)!

(n̂ − Lmax − Lmin)!
(23)
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and
Lmin∏
k=1

(n̂ − Lmin + k) = n̂!

(n̂ − Lmin)!
. (24)

Substituting (23) and (24) into (22) we arrive at

fK,M(n̂) = f (n̂ − M)
(n̂ − Lmax)!(n̂ − Lmin)!

n̂!(n̂ − Lmax − Lmin)!
(25)

or, more explicitly,

fK,M(n̂) = f (n̂ − M)
(n̂ − K)!(n̂ − M)!

n̂!(n̂ − K − M)!
. (26)

As it stands, this formula (26) applies to arbitrary M and K , no matter that M � K or M � K .
Because our derivation holds true for any positive integers M and K , it applies as well to

the case of K = 1 for which we obtain from (26)

f1,M(n̂) = f (n̂ − M)

(
1 − M

n̂

)
(27)

which agrees with the result reported in [11]. If f ≡ 1, (27) reduces further to

f1,M(n̂) =
(

1 − M

n̂

)
(28)

which corresponds to the case of photon-added coherent states [6,7] as discovered in [8]. For
K = 2

f2,M(n̂) = f (n̂ − M)

(
1 − M(M + 1 − 2n̂)

n̂(n̂ − 1)

)
, (29)

and for K = 3

f3,M(n̂) = f (n̂ − M)

(
1 − M(M2 + 3M + 2 − 3(M + 2)n̂ + 3n̂2)

n̂(n̂ − 1)(n̂ − 2)

)
, (30)

and so on.
Since it is well known that the quantum statistical properties of the KNCS are very sensitive

to the nonlinear function, the excited KNCS promises novel behaviour as compared to the
original KNCS because the excitation modifies the nonlinear function from f (n̂) to fK,M(n̂).
The clearest example concerns the case of K = 1 and f (n̂) = 1: for M = 0 it is the coherent
state which is purely classical, whereas for M � 1 it is the photon-added coherent state which
is intrinsically nonclassical. To emphasize the significance of the results, let us now examine
the dependence on the excitation level of the antibunching character of the vibrational motion
of a laser-driven trapped ion in an excited KNCS with K > 1. Without excitation, i.e. with
M = 0, the concerned KNCS is characterized by the nonlinear function [18, 23]

f (n̂) = (n̂ − K)!LK
n̂−K

(η2)

n̂L0
n̂−K

(η2)
(31)

where η is the Lamb–Dicke parameter and L
q
n(z) is the nth generalized Laguerre polynomial

in z for a parameter q. Antibunching appears if AKj < 1 where

AKj = 〈(a+a)2〉 − 〈a+a〉2

〈a+a〉 (32)

with 〈· · ·〉 ≡ 〈fK,M, j, K, ξ | · · · |ξ, K, j, fK,M〉 the underlying quantum average. In figure 1
we plot A30, A31 and A32 as a function of |ξ | for different levels of excitation. This figure shows
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Figure 1. A30, A31 and A32 in the excited KNCS as a function of |ξ | for η = 0.05 and different M .
The value of M is indicated near the curve.

that the higher the excitation level, i.e. the greater the value of M , the better the antibunching
degree. More interestingly, we also observe that antibunching always exists in an excited
KNCS (M � 1) but may be absent in the original KNCS (M = 0) in some range of |ξ |, as
can be clearly seen from figure 1 for A30 and A31. Exciting a KNCS thus provides a means to
manipulate the quantum state. This would give relevant motivation for more thorough studies
in the future.
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